Neuroimaging Studies of the Neural Correlates of Heart Rate Variability: A Systematic Review

Author:

Matusik Patrycja S.1ORCID,Zhong Chuwen2ORCID,Matusik Paweł T.34ORCID,Alomar Omar5ORCID,Stein Phyllis K.5

Affiliation:

1. Department of Diagnostic Imaging, University Hospital, 30-688 Kraków, Poland

2. Center for Social Epidemiology and Population Health, Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA

3. Department of Electrocardiology, Institute of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, 31-202 Kraków, Poland

4. Department of Electrocardiology, The John Paul II Hospital, 31-202 Kraków, Poland

5. Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, Saint Louis, MO 63110, USA

Abstract

Direct and indirect links between brain regions and cardiac function have been reported. We performed a systematic literature review to summarize current knowledge regarding the associations of heart rate variability (HRV) and brain region morphology, activity and connectivity involved in autonomic control at rest in healthy subjects. Both positive and negative correlations of cortical thickness and gray matter volumes of brain structures with HRV were observed. The strongest were found for a cluster located within the cingulate cortex. A decline in HRV, as well as cortical thickness with increasing age, especially in the orbitofrontal cortex were noted. When associations of region-specific brain activity with HRV were examined, HRV correlated most strongly with activity in the insula, cingulate cortex, frontal and prefrontal cortices, hippocampus, thalamus, striatum and amygdala. Furthermore, significant correlations, largely positive, between HRV and brain region connectivity (in the amygdala, cingulate cortex and prefrontal cortex) were observed. Notably, right-sided neural structures may be preferentially involved in heart rate and HRV control. However, the evidence for left hemispheric control of cardiac vagal function has also been reported. Our findings provide support for the premise that the brain and the heart are interconnected by both structural and functional networks and indicate complex multi-level interactions. Further studies of brain–heart associations promise to yield insights into their relationship to health and disease.

Funder

National Science Centre, Poland

the Ministry of Science and Higher Education

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3