Differential Modulation of the Excitatory and Inhibitory Synaptic Circuits of Retinal Ganglion Cells via Asiatic Acid in a Chronic Glaucoma Rat Model

Author:

Zhang Yinglei1234,Hu Chunyan12345,Niu Cong6,Hong Jiaxu1234,Zhou Xujiao1234

Affiliation:

1. Eye Institute, Eye & ENT Hospital, Fudan University, Shanghai 200032, China

2. Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200032, China

3. NHC Key Laboratory of Myopia, Eye & ENT Hospital, Fudan University, Shanghai 200032, China

4. Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai 200032, China

5. Department of Pathology, Eye & ENT Hospital, Fudan University, Shanghai 200032, China

6. Department of Respiratory Medicine, Huadong Hospital, Fudan University, Shanghai 200040, China

Abstract

Purpose: To investigate whether asiatic acid (AA) can improve the quantity and function of retinal ganglion cells (RGCs), as well as how AA regulates synaptic pathways in rat models with chronic glaucoma. Methods: In our study, a rat model of chronic glaucoma was prepared via the electrocoagulation of the episcleral veins. The numbers of surviving RGCs were counted via retrograde Fluorogold labeling, and a whole-cell patch clamp was used to clamp RGCs in normal retinal sections and in retinal sections 4 weeks after glaucoma induction. Results: Retrograde-Fluorogold-labeled RGC loss caused by persistent glaucoma was decreased by AA. Additionally, AA reduced the postsynaptic current produced by N-methyl-D-aspartate (NMDA) and diminished miniature glutamatergic excitatory neurotransmission to RGCs. On the other hand, AA increased miniature gamma-aminobutyric acid (GABA)-ergic inhibitory neurotransmission to RGCs and enhanced the GABA-induced postsynaptic current. The excitability of the RGC itself was also decreased by AA. RGCs in glaucomatous slices were less excitable because AA decreased their spontaneous action potential frequency and membrane potential, which led to a hyperpolarized condition. Conclusions: AA directly protected RGCs in a chronic glaucoma rat model by lowering their hyperexcitability. To enhance RGCs’ survival and function in glaucoma, AA may be a viable therapeutic drug.

Funder

National Natural Science Foundation of China

Shanghai Natural Science Foundation

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3