Gut and Gill-Associated Microbiota of the Flatfish European Plaice (Pleuronectes platessa): Diversity, Metabolome and Bioactivity against Human and Aquaculture Pathogens

Author:

Ghotbi Marjan,Kelting Ole,Blümel MartinaORCID,Tasdemir DenizORCID

Abstract

Similar to other marine holobionts, fish are colonized by complex microbial communities that promote their health and growth. Fish-associated microbiota is emerging as a promising source of bioactive metabolites. Pleuronectes platessa (European plaice, plaice), a flatfish with commercial importance, is common in the Baltic Sea. Here we used a culture-dependent survey followed by molecular identification to identify microbiota associated with the gills and the gastrointestinal tract (GIT) of P. platessa, then profiled their antimicrobial activity and metabolome. Altogether, 66 strains (59 bacteria and 7 fungi) were isolated, with Proteobacteria being the most abundant phylum. Gill-associated microbiota accounted for higher number of isolates and was dominated by the Proteobacteria (family Moraxellaceae) and Actinobacteria (family Nocardiaceae), whereas Gram-negative bacterial families Vibrionaceae and Shewanellaceae represented the largest group associated with the GIT. The EtOAc extracts of the solid and liquid media cultures of 21 bacteria and 2 fungi representing the diversity of cultivable plaice-associated microbiota was profiled for their antimicrobial activity against three fish pathogens, human bacterial pathogen panel (ESKAPE) and two human fungal pathogens. More than half of all tested microorganisms, particularly those originating from the GIT epithelium, exhibited antagonistic effect against fish pathogens (Lactococcus garvieae, Vibrio ichthyoenteri) and/or human pathogens (Enterococcus faecium, methicillin-resistant Staphylococcus aureus). Proteobacteria represented the most active isolates. Notably, the solid media extracts displayed higher activity against fish pathogens, while liquid culture extracts were more active against human pathogens. Untargeted metabolomics approach using feature-based molecular networking showed the high chemical diversity of the liquid extracts that contained undescribed clusters. This study highlights plaice-associated microbiota as a potential source of antimicrobials for the control of human and the aquaculture-associated infections. This is the first study reporting diversity, bioactivity and chemical profile of culture-dependent microbiota of plaice.

Publisher

MDPI AG

Subject

Drug Discovery,Pharmacology, Toxicology and Pharmaceutics (miscellaneous),Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3