Machine Learning Based Protection Scheme for Low Voltage AC Microgrids

Author:

Uzair MuhammadORCID,Eskandari MohsenORCID,Li LiORCID,Zhu JianguoORCID

Abstract

The microgrid (MG) is a popular concept to handle the high penetration of distributed energy resources, such as renewable and energy storage systems, into electric grids. However, the integration of inverter-interfaced distributed generation units (IIDGs) imposes control and protection challenges. Fault identification, classification and isolation are major concerns with IIDGs-based active MGs where IIDGs reveal arbitrary impedance and thus different fault characteristics. Moreover, bidirectional complex power flow creates extra difficulties for fault analysis. This makes the conventional methods inefficient, and a new paradigm in protection schemes is needed for IIDGs-dominated MGs. In this paper, a machine-learning (ML)-based protection technique is developed for IIDG-based AC MGs by extracting unique and novel features for detecting and classifying symmetrical and unsymmetrical faults. Different signals, namely, 400 samples, for wide variations in operating conditions of an MG are obtained through electromagnetic transient simulations in DIgSILENT PowerFactory. After retrieving and pre-processing the signals, 10 different feature extraction techniques, including new peaks metric and max factor, are applied to obtain 100 features. They are ranked using the Kruskal–Wallis H-Test to identify the best performing features, apart from estimating predictor importance for ensemble ML classification. The top 18 features are used as input to train 35 classification learners. Random Forest (RF) outperformed all other ML classifiers for fault detection and fault type classification with faulted phase identification. Compared to previous methods, the results show better performance of the proposed method.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3