Parameter Identification of Electrical Equivalent Circuits including Mass Transfer Parameters for the Selection of the Operating Frequencies of Pulsed PEM Water Electrolysis

Author:

Kim Jae-HoonORCID,Oh Chang-Yeol,Kim Ki-RyongORCID,Lee Jong-Pil,Kim Tae-Jin

Abstract

This paper proposes a parameter identification method for a PEM electrolyzer electrical equivalent circuit for pulse electrolysis. Since general water electrolysis mainly uses DC currents, identifying equivalent circuit parameters using electrical characteristics mostly ignores the operation frequency and unnecessarily adheres to the secondary RC model. However, looking at the Nyquist plot of the PEM electrolyzer, it can be confirmed that identifying the operational frequency is necessary, and the secondary RC model correction is essential. Therefore, the proposed method confirms the necessity of reconstructing an electrical equivalent circuit with a primary RC model by analyzing the transient cell voltage using step current inputs and calculating an appropriate operating frequency by identifying the parameters of the reconstructed equivalent circuit. To verify the proposed parameter identification method, a simulation was constructed from the raw test data of a 400 W commercial PEM electrolyzer. In addition, the hydrogen production amount was compared to DC using a pulse electrolysis experiment at the operating frequency obtained by the proposed method.

Funder

Korea Electrotechnology Research Institute

National Research Council of Science & Technology

the Ministry of Science and ICT

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference17 articles.

1. Renewable hydrogen production;Turner;Int. J. Energy Res.,2008

2. A comparative overview of hydrogen production processes;Nikolaidis;Renew. Sustain. Energy Rev.,2017

3. Hydrogen production by PEM water electrolysis—A review;Kumar;Mater. Sci. Energy Technol.,2019

4. Experimental Study of Wave Shape and Frequency of the Power Supply on the Energy Efficiency of Hydrogen Production by Water Electrolysis;Manea;Int. J. Innov. Res. Sci. Eng. Tech.,2015

5. A comprehensive review on PEM water electrolysis;Carmo;Int. J. Hydrog. Energy,2013

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3