A Combined Fuzzy Optimization Model for the Location of an Intelligent Energy-Efficient Manufacturing Industrial Park

Author:

He Chufeng1ORCID,Liu Aijun1ORCID,Xu Lei2,Yuan Shuailei1ORCID,Cheng Mingbao3,Wang Huan1,Wang Fang1,Lu Hui4,Liu Xiaoxue5

Affiliation:

1. School of Economics and Management, Xidian University, Xi’an 710126, China

2. Economics and Management College, Civil Aviation University of China, Tianjin 300300, China

3. Business School, Nanjing University of Information Science & Technology, Nanjing 200444, China

4. Tianhua College, Shanghai Normal University, Shanghai 201815, China

5. Guangzhou Basto Glasses Co., Ltd., Guangzhou 510800, China

Abstract

With the background of implementing carbon peaking and carbon neutralization, identifying methods to realize energy-saving and carbon reduction effectively has become an important issue in the intelligent energy-conservation manufacturing industry. During the process of achieving this goal, determining an optimal location for a low-carbon and intelligent manufacturing industrial park is a foremost decision-making problem for manufacturing corporations’ energy-efficient development. The article established a multi-criteria decision framework to assist manufacturing companies when selecting suitable industrial park sites. To begin with, an evaluation criteria framework is confirmed by literature search. Then, a fuzzy optimization model, which combines the fuzzy Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and the fuzzy VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) is presented, where fuzzy TOPSIS is used to determine the decision-maker criteria weights. Then, criteria weights are calculated by the optimization model with construction of a Lagrange function. Moreover, the fuzzy VIKOR method is applied to sort alternatives and choose the best alternative location. In addition, five alternative sites for a manufacturing company are evaluated and ranked according to the values of the ranking index as a numerical case to demonstrate the proposed framework’s application. Finally, a comprehensive analysis of diverse methods and sensitivity analyses for the volatility in criteria weights and decision-maker weights is illustrated to confirm that the framework is practicable for the problem of intelligent and sustainable manufacturing industrial park-site selection.

Funder

Natural Science Basic Research Program of Shaanxi

Shaanxi Province Innovation Capacity Support Program

NSFC special supporting funding of CAUC

SAFEA High-End Foreign Experts Project

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3