Analysing the Economic Viability of Implicit Demand Response Control of Thermal Energy Storage in Hot Water Tanks

Author:

Gibbons Laurence,Javed SaqibORCID

Abstract

Demand-responsive control of electrically heated hot water storage tanks (HWSTs) is one solution, already present in the building stock, to stabilise volatile energy networks and markets. This has been put into sharp focus with the current energy crisis in Europe due to reduced access to natural gas. Furthermore, increasing proportions of intermittent renewable energy will likely add to this volatility. However, the adoption of demand response (DR) by consumers is highly dependent on the economic benefit. This study assesses the economic potential of DR of centralised HWSTs through both an analysis of spot price data and an optimisation algorithm approximating DR control. The methods are applied to a case study apartment building in Norway using current pricing models and examine the effect of the demand profile, electricity prices, heating power and storage capacity on energy cost and energy flexibility. Unit cost savings from DR are closely linked to the variation in unit energy price during the optimisation period. Increasing the storage capacity or the heating power increases the flexibility with a diminishing rate of return. However, increasing storage capacity does not result in cost savings as additional heat losses are greater than the saving from shifting demand, except for during highly volatile electricity price periods. Changing the minimum setpoint temperature improves the cost curve as a greater thermal storage capacity can be achieved without increasing heat loss. Systems utilising a smaller heating power are more economical due to the dominant role of the monthly price related to the peak energy demand of the system.

Funder

The Research Council of Norway

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference69 articles.

1. Market Observatory for Energy (2022). Quarterly Report on European Electricity Markets (Q1 2022), European Commission.

2. (2022, September 30). European Commission, Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions Repowereu Plan REPowerEU Plan. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2022%3A230%3AFIN&qid=1653033742483.

3. IEA EBC Annex 67 Energy Flexible Buildings;Jensen;Energy Build.,2017

4. Review of energy system flexibility measures to enable high levels of variable renewable electricity;Lund;Renew. Sustain. Energy Rev.,2015

5. Clauß, J., Stinner, S., Solli, C., Lindberg, K.B., Madsen, H., and Georges, L. (2018, January 10–12). A generic methodology to evaluate hourly average CO2eq. intensities of the electricity mix to deploy the energy flexibility potential of Norwegian buildings. Proceedings of the 10th International Conference on System Simulation in Buildings, Liege, Belgium.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3