A Tortuosity Engineered Dual-Microporous Layer Electrode Including Graphene Aerogel Enabling Largely Improved Direct Methanol Fuel Cell Performance with High-Concentration Fuel

Author:

Guan Li,Balakrishnan Prabhuraj,Liu Huiyuan,Zhang Weiqi,Deng Yilin,Su Huaneng,Xing Lei,Penga ŽeljkoORCID,Xu QianORCID

Abstract

Methanol crossover is an important factor affecting the performance of direct methanol fuel cells (DMFCs). In this work, a novel membrane electrode assembly (MEA) is designed and prepared by adding a layer of graphene aerogel (GA) between the carbon powder microporous layer and the catalytic layer, which optimizes the methanol transport and improves the output performance of DMFC at high methanol concentrations. Compared to conventional carbon powder, the addition of GA increases the tortuosity of the anode in the through-plane direction; hence, methanol is diluted to a suitable concentration when it reaches the catalyst. The maximum power density of the novel MEA can reach 27.4 mW·cm−2 at a condition of 8 M methanol, which is 234% higher than that of the conventional electrode. The test results of electrochemical impedance spectroscopy (EIS) indicate that the addition of GA does not increase the internal resistance of the novel MEA and that the mass transfer resistance at high concentrations is significantly lower. The experimental results indicate that the output performance at high concentration can be significantly improved by adding a GA layer, and its practicability in portable devices can be improved. It also improves the stability of DMFC under long-term testing.

Funder

China Postdoctoral Science Foundation

Natural Science Foundation of Jiangsu Province for Youths

National Natural Science Foundation of China

State Key Laboratory of Engines at Tianjin University

the High-Tech Key Laboratory of Zhenjiang City

project STIM–REI

European Union through the European Regional Development Fund

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3