Optimum Parallel Processing Schemes to Improve the Computation Speed for Renewable Energy Allocation and Sizing Problems

Author:

Younesi SoheilORCID,Ahmadi BahmanORCID,Ceylan OguzhanORCID,Ozdemir AydoganORCID

Abstract

The optimum penetration of distributed generations into the distribution grid provides several technical and economic benefits. However, the computational time required to solve the constrained optimization problems increases with the increasing network scale and may be too long for online implementations. This paper presents a parallel solution of a multi-objective distributed generation (DG) allocation and sizing problem to handle a large number of computations. The aim is to find the optimum number of processors in addition to energy loss and DG cost minimization. The proposed formulation is applied to a 33-bus test system, and the results are compared with themselves and with the base case operating conditions using the optimal values and three popular multi-objective optimization metrics. The results show that comparable solutions with high-efficiency values can be obtained up to a certain number of processors.

Funder

TUBITAK, the Turkish Council for Scientific and Technological Research

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3