Computer Vision and Pattern Recognition for the Analysis of 2D/3D Remote Sensing Data in Geoscience: A Survey

Author:

Savelonas Michalis A.,Veinidis Christos N.,Bartsokas Theodoros K.

Abstract

Historically, geoscience has been a prominent domain for applications of computer vision and pattern recognition. The numerous challenges associated with geoscience-related imaging data, which include poor imaging quality, noise, missing values, lack of precise boundaries defining various geoscience objects and processes, as well as non-stationarity in space and/or time, provide an ideal test bed for advanced computer vision techniques. On the other hand, the developments in pattern recognition, especially with the rapid evolution of powerful graphical processing units (GPUs) and the subsequent deep learning breakthrough, enable valuable computational tools, which can aid geoscientists in important problems, such as land cover mapping, target detection, pattern mining in imaging data, boundary extraction and change detection. In this landscape, classical computer vision approaches, such as active contours, superpixels, or descriptor-guided classification, provide alternatives that remain relevant when domain expert labelling of large sample collections is often not feasible. This issue persists, despite efforts for the standardization of geoscience datasets, such as Microsoft’s effort for AI on Earth, or Google Earth. This work covers developments in applications of computer vision and pattern recognition on geoscience-related imaging data, following both pre-deep learning and post-deep learning paradigms. Various imaging modalities are addressed, including: multispectral images, hyperspectral images (HSIs), synthetic aperture radar (SAR) images, point clouds obtained from light detection and ranging (LiDAR) sensors or digital elevation models (DEMs).

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference349 articles.

1. Machine learning for the geosciences: Challenges and op-portunities;Karpatne;IEEE Tran. Knowl. Dat. Eng.,2019

2. NASA, and USGS (2022, June 24). Landsat Data Archive, Available online: https://landsat.gsfc.nasa.gov/data/.

3. A comprehensive review of remote sensing platforms, sensors, and applications in nut crops;Jafarbiglu;Comput. Electron. Agric.,2022

4. Manfreda, S., McCabe, M.F., Miller, P.E., Lucas, R., Madrigal, V.P., Mallinis, G., Ben Dor, E., Helman, D., Estes, L., and Ciraolo, G. (2018). On the Use of Unmanned Aerial Systems for Environmental Monitoring. Remote Sens., 10.

5. Peckham, S.D. (2014, January 15–19). The CSDMS standard names: Cross-domain naming conventions for describing process models, data sets and their associated variables. Proceedings of the International Congress on Environmental Modelling and Software, San Diego, CA, USA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3