Failure Mechanism Analysis of Mining-Induced Landslide Based on Geophysical Investigation and Numerical Modelling Using Distinct Element Method

Author:

Li Jun,Li Bin,He Kai,Gao Yang,Wan Jiawei,Wu Weile,Zhang Han

Abstract

Underground mining activity in the karst mountain in southwestern China has induced several large-scale rocky landslides and has caused serious casualties. At present, there is a lack of systematic research on the formation mechanism of landslides in this area using multi-method fusion technology. First, the orthophoto images of the landslide area obtained by UAV photography were used to analyze the deformation characteristics of the landslide. Second, the failure characteristics of the strata overlying the goaf were analyzed by geophysical detection. Finally, the deformation response characteristics of the mountain under underground mining were analyzed by UDEC numerical simulation. The results revealed that during the underground mining, the failure process of the mountain occurred in four stages: fracture expansion, subsidence and collapse, shear sliding, and multi-level sliding. Gently dipping soft–hard alternant strata and a blocky rock mass structure formed the geological foundation of the landslides. Underground mining accelerated the fracturing of the overlying strata and the formation of a stepped penetrating sliding surface. Tensile movement of the structural planes of hard sandstone in the free face, and shear sliding of the weak mudstone layer, were the main causes of the landslides. The slope instability mode was tension-shear fracturing, shear sliding, back toppling, and compressive shear failure. In addition, the fracture propagation in the overlying strata and damaged geological structure revealed by the geophysical detection were consistent with the simulation results. This study provides ideas for the precise countermeasures of disaster prevention and mitigation for similar landslides in this area.

Funder

National Key R&D Program of China

National Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference54 articles.

1. A leaning historical monument formed by underground mining effect: An example from Czech Republic;Yilmaz;Eng. Geol.,2012

2. The effect of rock mass gradual deterioration on the mechanism of post-mining subsidence over shallow abandoned coal mines;Salmi;Int. J. Rock Mech. Min. Sci.,2017

3. Krahn, J., and Morgenstern, N.R. (1976). Rock Engineering for Foundations and Slopes, ASCE.

4. Landslide research in the South Wales coalfield;Bentley;Eng. Geol.,1996

5. Yang, S., Zhang, J., and Yang, T. (2012). Guizhou Mine Geological Environment, Geological Press. (In Chinese).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3