Active Pairwise Constraint Learning in Constrained Time-Series Clustering for Crop Mapping from Airborne SAR Imagery

Author:

Qin XingliORCID,Zhao Lingli,Yang Jie,Li Pingxiang,Wu BingfangORCID,Sun Kaimin,Xu Yubin

Abstract

Airborne SAR is an important data source for crop mapping and has important applications in agricultural monitoring and food safety. However, the incidence-angle effects of airborne SAR imagery decrease the crop mapping accuracy. An active pairwise constraint learning method (APCL) is proposed for constrained time-series clustering to address this problem. APCL constructs two types of instance-level pairwise constraints based on the incidence angles of the samples and a non-iterative batch-mode active selection scheme: the must-link constraint, which links two objects of the same crop type with large differences in backscattering coefficients and the shapes of time-series curves; the cannot-link constraint, which links two objects of different crop types with only small differences in the values of backscattering coefficients. Experiments were conducted using 12 time-series images with incidence angles ranging from 21.2° to 64.3°, and the experimental results prove the effectiveness of APCL in improving crop mapping accuracy. More specifically, when using dynamic time warping (DTW) as the similarity measure, the kappa coefficient obtained by APCL was increased by 9.5%, 8.7%, and 5.2% compared to the results of the three other methods. It provides a new solution for reducing the incidence-angle effects in the crop mapping of airborne SAR time-series images.

Funder

National Natural Science Foundation of China

Strategic Priority Research Program of the Chinese Academy of Sciences

Shenzhen Fundamental Research Program

Joint Funds of the National Natural Science Foundation of China

National Natural Science Foundation of China Major Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference70 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3