Abstract
Displacement is an important parameter in the assessment of the integrity of infrastructure; thus, its measurement is required in a multitude of guidelines or codes for structural health monitoring in most countries. To develop a low-cost and remote displacement measurement technique, a novel method based on an unmanned aerial vehicle (UAV) and digital image correlation (DIC) is presented in this study. First, an auxiliary reference image that meets the requirements is fabricated using the selected first image. Then, the speeded-up robust features (SURF) algorithm is introduced to track the feature points in the fixed areas. The least square algorithm is then employed to resolve the homography matrix of the auxiliary reference image and target images; then, the acquired homography matrices are utilized to calibrate the deviation caused by the UAV wobble. Finally, the integral pixel and sub-pixel matching of the DIC algorithm is employed to calculate the displacement of the target object. The numerical simulation results show that the proposed method has higher calculation accuracy and stability. The outdoor experiment results show that the proposed method has definite practicability.
Funder
National Key Research and Development Program
National Natural Science Foundation of China
National Natural Science Foundation of Chongqing
Subject
General Earth and Planetary Sciences
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献