UAV Low-Altitude Aerial Image Stitching Based on Semantic Segmentation and ORB Algorithm for Urban Traffic

Author:

Zhang Gengxin,Qin DanyangORCID,Yang Jiaqiang,Yan Mengying,Tang Huapeng,Bie Haoze,Ma LinORCID

Abstract

UAVs are flexible in action, changeable in shooting angles, and complex and changeable in the shooting environment. Most of the existing stitching algorithms are suitable for images collected by UAVs in static environments, but the images are in fact being captured dynamically, especially in low-altitude flights. Considering that the great changes of the object position may cause the low-altitude aerial images to be affected by the moving foreground during stitching, so as to result in quality problems, such as splicing misalignment and tearing, a UAV aerial image stitching algorithm is proposed based on semantic segmentation and ORB. In the image registration, the algorithm introduces a semantic segmentation network to separate the foreground and background of the image and obtains the foreground semantic information. At the same time, it uses the quadtree decomposition idea and the classical ORB algorithm to extract feature points. By comparing the feature point information with the foreground semantic information, the foreground feature points can be deleted to realize feature point matching. Based on the accurate image registration, the image stitching and fusion will be achieved by the homography matrix and the weighted fusion algorithm. The proposed algorithm not only preserves the details of the original image, but also improves the four objective data points of information entropy, average gradient, peak signal-to-noise ratio and root mean square error. It can solve the problem of splicing misalignment tearing during background stitching caused by dynamic foreground and improves the stitching quality of UAV low-altitude aerial images.

Funder

Outstanding Youth Project of Provincial Natural Science Foundation of China in 2020

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on stitching technology based on enhanced images of substations;Third International Conference on Computer Graphics, Image, and Virtualization (ICCGIV 2023);2023-11-14

2. PRESCAN Adaptive Vehicle Image Real-Time Stitching Algorithm Based on Improved SIFT;International Journal of Information Technologies and Systems Approach;2023-04-20

3. A Real-Time Registration Algorithm of UAV Aerial Images Based on Feature Matching;Journal of Imaging;2023-03-11

4. Non-Cooperative Spacecraft Pose Measurement with Binocular Camera and TOF Camera Collaboration;Applied Sciences;2023-01-20

5. Indoor UAV Object Detection Algorithms On Three Processors: Implementation Test And Comparison;2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE);2023-01-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3