Author:
Yang Mingchuan,Xue Guanchang,Liu Botao,Yang Yupu
Abstract
In this paper, cognitive technology is introduced into the integrated satellite terrestrial system to realize the dynamic spectrum sharing of the system and improve the utilization rate of spectrum resources. To overcome the effects of low signal-to-noise ratio (SNR) and noise uncertainty in the channel, a dual-threshold cooperative sensing strategy based on energy detection is introduced. Spectrum sensing is considered as a binary hypothesis problem, but the uncertainty of noise interference in the integrated satellite terrestrial cognitive system will cause the perception to appear ambiguous. Moreover, the noise power varies with time and relative position within a certain range. In the fuzzy state, the perception technology adopts the equal-gain merging algorithm, and derives the voting optimization algorithm to improve the accuracy of decision-making. In addition, taking the minimum error probability as the optimization goal, the optimal adjustment of the adaptive double threshold is realized based on the equal-gain combining algorithm. The simulation results show that the spectrum detection accuracy under low SNR is improved, and the opportunity for terrestrial networks to share spectrum resources is increased.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
General Earth and Planetary Sciences