Analysis of Connectome Graphs Based on Boundary Scale

Author:

Moron-Fernández María José1ORCID,Amedeo Ludovica Maria2,Monterroso Muñoz Alberto1ORCID,Molina-Abril Helena1,Díaz-del-Río Fernando1ORCID,Bini Fabiano2ORCID,Marinozzi Franco2,Real Pedro1ORCID

Affiliation:

1. Higher Technical School of Informatics Engineering, University of Seville, Avda. Reina Mercedes, s/n, 41012 Seville, Spain

2. Department of Mechanical and Aerospace Engineering, “Sapienza” University of Rome, Via Eudossiana, 18, 00184 Rome, Italy

Abstract

The purpose of this work is to advance in the computational study of connectome graphs from a topological point of view. Specifically, starting from a sequence of hypergraphs associated to a brain graph (obtained using the Boundary Scale model, BS2), we analyze the resulting scale-space representation using classical topological features, such as Betti numbers and average node and edge degrees. In this way, the topological information that can be extracted from the original graph is substantially enriched, thus providing an insightful description of the graph from a clinical perspective. To assess the qualitative and quantitative topological information gain of the BS2 model, we carried out an empirical analysis of neuroimaging data using a dataset that contains the connectomes of 96 healthy subjects, 52 women and 44 men, generated from MRI scans in the Human Connectome Project. The results obtained shed light on the differences between these two classes of subjects in terms of neural connectivity.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Topological scale framework for hypergraphs;Applied Mathematics and Computation;2025-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3