GNSS Precise Relative Positioning Using A Priori Relative Position in a GNSS Harsh Environment

Author:

Kim Euiho

Abstract

To enable Global Navigation Satellite System (GNSS)-based precise relative positioning, real-time kinematic (RTK) systems have been widely used. However, an RTK system often suffers from a wrong integer ambiguity fix in the GNSS carrier phase measurements and may take a long initialization time over several minutes, particularly when the number of satellites in view is small. To facilitate a reliable GNSS carrier phase-based relative positioning with a small number of satellites in view, this paper introduces a novel GNSS carrier phase-based precise relative positioning method that uses a fixed baseline length as well as heading measurements in the beginning of the operation, which allows the fixing of integer ambiguities with rounding schemes in a short time. The integer rounding scheme developed in this paper is an iterative process that sequentially resolves integer ambiguities, and the sequential order of the integer ambiguity resolution is based on the required averaging epochs that vary for each satellite depending on the geometry between the baseline and the double difference line-of-sight vectors. The required averaging epochs with respect to various baseline lengths and heading measurement uncertainties were analyzed through simulations. Static and dynamic field tests with low cost GNSS receivers confirmed that the positioning accuracy of the proposed method was better than 10 cm and significantly outperformed a conventional RTK solution in a GNSS harsh environment.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3