Identification of the Most Suitable Probability Distribution Models for Maximum, Minimum, and Mean Streamflow

Author:

Langat ,Kumar ,Koech

Abstract

Hydrological studies are useful in designing, planning, and managing water resources, infrastructure, and ecosystems. Probability distribution models are applied in extreme flood analysis, drought investigations, reservoir volumes studies, and time-series modelling, among other various hydrological studies. However, the selection of the most suitable probability distribution and associated parameter estimation procedure, as a fundamental step in flood frequency analysis, has remained the most difficult task for many researchers and water practitioners. This paper explains the current approaches that are used to identify the probability distribution functions that are best suited for the estimation of maximum, minimum, and mean streamflows. Then, it compares the performance of six probability distributions, and illustrates four fitting tests, evaluation procedures, and selection procedures through using a river basin as a case study. An assemblage of the latest computer statistical packages in an integrated development environment for the R programming language was applied. Maximum likelihood estimation (MLE), goodness-of-fit (GoF) tests-based analysis, and information criteria-based selection procedures were used to identify the most suitable distribution models. The results showed that the gamma (Pearson type 3) and lognormal distribution models were the best-fit functions for maximum streamflows, since they had the lowest Akaike Information Criterion values of 1083 and 1081, and Bayesian Information Criterion (BIC) values corresponding to 1087 and 1086, respectively. The Weibull, GEV, and Gumbel functions were the best-fit functions for the annual minimum flows of the Tana River, while the lognormal and GEV distribution functions the best-fit functions for the annual mean flows of the Tana River. The choices of the selected distribution functions may be used for forecasting hydrologic events and detecting the inherent stochastic characteristics of the hydrologic variables for predictions in the Tana River Basin. This paper also provides a significant contribution to the current understanding of predicting extreme hydrological events for various purposes. It indicates a direction for hydro-meteorological scientists within the current debate surrounding whether to use historical data and trend estimation techniques for predicting future events with issues of non-stationarity and underlying stochastic processes.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference85 articles.

1. Post-Evaluation of Flood Hazards Induced by Former Artificial Interventions along a Coastal Mediterranean Settlement

2. Extreme Flood Response: The June 2008 Flooding in Iowa

3. Assessment of Environmental Flows from Complexity to Parsimony—Lessons from Lesotho

4. Real-time flood forecasting using ensemble kalman filter;Srikanthan,2007

5. Selection of flood frequency model in niger basin using maximum likelihood method;Bolaji,2008

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3