Analysis of the Mixing Processes in a Shallow Subtropical Reservoir and Their Effects on Dissolved Organic Matter

Author:

Wang ,Zhang ,Bertone ,Stewart ,O’Halloran

Abstract

A good understanding of the physical processes of lakes or reservoirs, especially of those providing drinking water to residents, plays a vital role in water management. In this study, the water circulation and mixing processes occurring in the shallow, subtropical Tingalpa Reservoir in Australia have been investigated. Bathymetrical, meteorological, chemical and physical data collected from field measurements, laboratory analysis of water sampling and an in-situ Vertical Profile System (VPS) were analysed. Based on the high-frequency VPS dataset, a 1D model was developed to provide information for vertical transport and mixing processes. The results show that persistent high air temperature and stable reservoir water depth lead to a prolonged thermal stratification. Analysis indicates that heavy rainfalls have a significant impact on water quality when the dam level is low. The peak value of Dissolved Organic Carbon (DOC) concentration occurred in the wet season, while the specific UV absorbance (SUVA) value decreased when solar radiation increased from spring to summer. The study aims to provide a comprehensive approach for understanding and modelling the water mixing processes in similar lakes with high-frequency data from VPS’s or other monitoring systems.

Funder

Australian Research Council

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3