Back-Projected Signal-Based Self-Interferometric Phase Analysis Technique for Sea Surface Observation Using a Single Scatterometer System

Author:

Hwang Ji-hwan1ORCID,Kim Duk-jin2ORCID

Affiliation:

1. Research Institute of Basic Sciences, Seoul National University, Seoul 88026, Republic of Korea

2. School of Earth and Environmental Science, Seoul National University, Seoul 88026, Republic of Korea

Abstract

This manuscript presents a self-interferometric phase analysis technique for sea surface observation using a single scatterometer system. The self-interferometric phase is proposed to complement the imprecise analysis results due to the very meager signal strength measured at a high incident angle of more than 30°, which is a vulnerability of the existing analysis method using the Doppler frequency based on the backscattered signal strength. Moreover, compared to conventional interferometry, it is characterized by the phase-based analysis using consecutive signals from a single scatterometer system without any auxiliary system or channel. To apply the interferometric signal process on the moving sea surface observation, it is necessary to secure a reference target; however, this is hard to solve in practice. Hence, we adopted the back-projection algorithm to project the radar signals onto a fixed reference position above the sea surface, where the theoretical model for extracting the self-interferometric phase was derived from the radar-received signal model applying the back-projection algorithm. The observation performance of the proposed method was verified using the raw data collected at the Ieodo Ocean Research Station in Republic of Korea. In the observation result for wind velocity at the high incident angles of 40° and 50°, the self-interferometric phase analysis technique shows a better performance of a correlation coefficient of more than about 0.779 and an RMSE (root-mean-square error) of about 1.69 m/s compared to the existing method of a correlation coefficient of less than 0.62 and RMSE of more than 2.46 m/s.

Funder

Korea Hydrographic and Oceanographic Agency

National Research Foundation of Korea

Korea government

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3