Affiliation:
1. Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada
Abstract
In this paper, we study to improve acoustical methods to identify endangered whale calls with emphasis on the blue whale (Balaenoptera musculus) and fin whale (Balaenoptera physalus). A promising method using wavelet scattering transform and deep learning is proposed here to detect/classify the whale calls quite precisely in the increasingly noisy ocean with a small dataset. The performances shown in terms of classification accuracy (>97%) demonstrate the efficiency of the proposed method which outperforms the relevant state-of-the-art methods. In this way, passive acoustic technology can be enhanced to monitor endangered whale calls. Efficient tracking of their numbers, migration paths and habitat become vital to whale conservation by lowering the number of preventable injuries and deaths while making progress in their recovery.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献