Effect of Short-Term Phosphorus Supply on Rhizosphere Microbial Community of Tea Plants

Author:

Yang Haoyu,Ji LingfeiORCID,Long LizhiORCID,Ni Kang,Yang Xiangde,Ma Lifeng,Guo Shiwei,Ruan JianyunORCID

Abstract

Microbes play an important role in rhizosphere phosphorus (P) activation and root P absorption in low P-available soils. However, the responses of the rhizosphere microbial community to P input and its effects on P uptake by tea plants have not been widely reported. In this study, the high-throughput sequencing of the 16S rRNA gene and the ITS2 region was employed to examine the responses of tea rhizosphere microbiomes to different P input rates (low-P, P0: 0 mg·kg−1 P; moderate-P, P1: 87.3 mg·kg−1 P; high-P, P2: 436.5 mg·kg−1 P). The results showed that the P input treatments significantly reduced the soil C: N ratio and C: P ratio compared to the P0 treatment (p < 0.05). Moreover, the P2 treatment significantly increased the soil available P, plant biomass and P content of the tea plant compared to the P0 and P1 treatments (p < 0.05). Both bacterial and fungal communities revealed the highest values of alpha diversity indices in the P1 treatment and the lowest in the P2 treatment. The dominant phyla of the bacterial community were Proteobacteria, Actinobacteria and Acidobacteria, while in the fungal community they were Ascomycota and Mortierellomycota. In addition, P input enriched the relative abundance of Actinobacteria and Proteobacteria but decreased the relative abundance of Acidobacteria. The Mantel correlation analysis showed that the fungal community was influenced by P input, whereas bacterial community was affected by the soil TC and C: N ratio. Furthermore, the P input treatments enhanced the TCA cycle, amino and nucleotide glucose metabolism, starch and sucrose metabolism, and phosphotransferase system expression, which could promote C and N cycling. On the contrary, the P input treatments negatively affected the growth of arbuscular mycorrhizal fungi. The PLS-PM model revealed that the rhizosphere bacterial and fungal communities, respectively, negatively and positively affected the P content by affecting the biomass. Meanwhile, rhizosphere microbial function profiles affected the P content of tea plants directly and positively. In summary, moderate P input favors the rhizosphere microbial diversity and functions in the short-term pot experiment. Therefore, we suggest that moderate P input should be recommended in practical tea production, and a further field test is required.

Funder

Science and Technology Talents and Platform Program of Yunnan Province

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference69 articles.

1. Phosphorus in Action: Biological Processes in Soil Phosphorus Cycling;Bünemann,2011

2. Phosphorus Nutrition: Plant Growth in Response to Deficiency and Excess;Malhotra,2018

3. Phosphorus Cycling: Prospects of Using Rhizosphere Microorganisms for Improving Phosphorus Nutrition of Plants;Sindhu;Geomicrobiol. Biogeochem.,2014

4. Phosphorus depletion in forest soils shapes bacterial communities towards phosphorus recycling systems

5. Long-Term Phosphorus Fertilization Impacts Soil Fungal and Bacterial Diversity but not AM Fungal Community in Alfalfa

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3