Characteristic Identification of Heat Exposure Based on Disaster Events for Single-Season Rice along the Middle and Lower Reaches of the Yangtze River, China

Author:

Jiang Mengyuan12,Huo Zhiguo12,Zhang Lei3,Kong Rui24,Li Meixuan2,Mi Qianchuan2

Affiliation:

1. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China

2. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China

3. National Meteorological Center, Beijing 100081, China

4. Department of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China

Abstract

As global warming continues, heat stress events are expected to increase and negatively affect rice production. Spatiotemporal changes in single-season rice exposure to heat stress were explored along the middle and lower reaches of the Yangtze River (MLRYR) in China during 1971–2020 based on created heat thresholds in different phenological stages, derived from comparison of historical heat records for single-season rice and agro-meteorological data. The feature importance (IF) provided by the Random Forest model was used to modulate the relationship between threshold accumulated temperature and yield reduction rate caused by heat stress. In addition, critical temperature thresholds at different phenological stages were determined by combining Overall Accuracy and the Receiver Operating Characteristic (ROC) curve. According to historical disaster records, the heat stress occurred before the reproductive phase (i.e., the tillering–jointing stage) and ended in the filling stage. Critical temperature thresholds of Tmax at tillering–jointing, booting, flowering and filling were quantified as 36, 35, 35 and 38 °C, with higher IF values of 13.14, 10.93, 17.15 and 13.15, respectively. The respective values of Overall Accuracy and the areas under the ROC curve were greater than 0.85 and 0.930, implying that each threshold performed excellently in identifying heat occurrence. Based on the determined critical thresholds, accumulated harmful temperature (Tcum), number of heat days (HD), first heat date (FHD) and last heat date (LHD) were presented to characterize heat exposure. It was clear that Tcum and HD exhibited a north-to-south increasing trend from 1971 to 2020, with the obvious increasing occurrence in most parts of the study region through the period of 2010 to 2020. FHD occurred earlier in most stations except the northeast parts, while LHD ended later in southern MLRYR. Exploring heat critical thresholds at different phenological stages highlighted in this study can help decision-makers monitor and evaluate heat exposure to single-season rice in MLRYR and further develop mitigation strategies to ensure rice production security.

Funder

Science and Technology Development Foundation of the Chinese Academy of Meteorological Sciences

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3