Responses of Soil Labile Organic Carbon on Aggregate Stability across Different Collapsing-Gully Erosion Positions from Acric Ferralsols of South China

Author:

Tang Xian12,Alhaj Hamoud Yousef3ORCID,Shaghaleh Hiba4ORCID,Zhao Jianrong2,Wang Hong2,Wang Jiajia5,Zhao Tao6,Li Bo1ORCID,Lu Ying1

Affiliation:

1. College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China

2. College of Natural Resources and Environment, Anhui Science and Technology University, Chuzhou 233100, China

3. College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China

4. College of Environment, Hohai University, Nanjing 210098, China

5. Anhui Provincial Key Laboratory of Nutrient Cycling, Resources & Environment, Institute of Soil and Fertilizer, Anhui Academy of Agricultural Sciences, Hefei 230031, China

6. Aerospace Environmental Engineering Co., Ltd., Tianjin 300301, China

Abstract

Soil labile organic carbon (LOC) is a valuable and sensitive parameter of the changes in soil carbon (C) pools and further affects soil structural stability. However, the influences of soil-aggregate stability on LOC fractions under erosion conditions are still unclear, especially under the collapsing gully area of south China. Soils of five positions of collapsing gully erosion, including the upper catchment (UC), collapsing wall (CW), colluvial deposit (CD), scour channel (SC) and alluvial fan (AF) from Acric Ferralsols were investigated and sampled. Soil aggregate stability and LOC fractions were measured and analyzed. Soil water-stable aggregate and passive C (passive-C) contents significantly increased by 67–76% and 8.7–13.0% at the UC, CW, CD and SC positions, respectively, while soil labile C (labile-C) content was lower at these positions as compared to the AF position (p < 0.05). Moreover, the UC position’s soil C pool management index (CPMI) significantly increased by 37–40% compared to CW, CD, SC and AF soils, indicating that the soil of the UC position had a more stable C pool due to its stronger structural stability. SOC, silt, and amorphous iron oxide (Fea) contents significantly contributed to aggregate stability. We demonstrated that the depletion of soil aggregate stability could result in the decreases in soil LOC fractions, while soil properties of the OC but not the LOC pool regulated aggregate stability and thus affected soil structure across different collapsing gully erosion positions in the subtropical Acric Ferralsols region of south China. This study contributes to developing strategies to prevent soil erosion and improve global C cycle and soil quality, which could be beneficial to strengthen soil and water conservation, and improve soil fertility (e.g., SOC) and vegetation recovery, such as tea and tobacco.

Funder

National Natural Science Foundation of China

National Key Research and Development Project of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3