The Progress towards Novel Herbicide Modes of Action and Targeted Herbicide Development

Author:

He BoORCID,Hu YanhaoORCID,Wang Wen,Yan Wei,Ye YonghaoORCID

Abstract

To date, effectively controlling resistant weeds has been a great challenge in modern agricultural production. Developing new modes of action of herbicides would be an efficient, convenient, and timely means of controlling resistant weeds. In particular, new modes of herbicide action do not appear to have evolutionary resistance or cross-resistance with existing herbicides. However, a few successful herbicides with new modes of action (MoAs) have been marketed in the past 20 years. In this paper, we analyzed limiting factors for the slow development of novel herbicide MoAs. We then summarized the positive herbicide targets for the herbicides that have been discovered in recent years, such as Solanyl Diphosphate Synthase (SPS), Fatty Acid Thioesterase (FAT), Plastid Peptide Deformylase (PDEF), and Dihydroxy-Acid Dehydratase (DHAD). Some commercial herbicide varieties have been obtained based on novel herbicide targets, such as Homogentisate Solanesyltransferase (HST) and Dihydroorotate Dehydrogenase (DHODH). This provides a new reference and idea for herbicide molecular design in the future. In addition, some practical and efficient methods were mentioned for the rational design, discovery, and development of targeted herbicides development. In order to overcome the adverse conditions of compound druggability, prodrug strategies are also used in herbicide development, which can optimize the administration, permeability, absorption, and distribution of the original drug molecule or a candidate compound and may provide more possibilities for the development of new herbicides. The development of new herbicides is fascinating, the challenges and rewards are great, and the path to success is becoming more apparent.

Funder

National Key Research and Development Program of China

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3