S-nitrosylation of SlAPX Is Involved in Alleviating Oxidative Damage in Transgenic Tobacco under Nitrate Stress

Author:

Lv Chuntao1,Liang Yuanlin1,Wang Manqi1,Li Kunzhi1,Sun Xudong2ORCID,Xu Huini1

Affiliation:

1. Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Street, Kunming 650224, China

2. Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China

Abstract

Nitric oxide (NO) modulates plant response by post-translationally modifying proteins, mainly through S-nitrosylation. Ascorbate peroxidase (APX) in the ascorbate-glutathione (AsA-GSH) cycle participates in the removal of hydrogen peroxide (H2O2). However, the relationship between S-nitrosylation and the role of tomato APX (SlAPX) under nitrate stress is still unclear. In this study, the enzyme activity, mRNA expression, and S-nitrosylation level of SlAPX were significantly increased in tomato roots after nitrate treatment. SlAPX protein could be S-nitrosylated by S-nitrosoglutathione in vitro, and APX activity was significantly increased after S-nitrosylation. The SlAPX overexpressed tobacco plants grew better than the wild type (WT) plants under nitrate stress. Meanwhile, the transgenic plants showed lower reactive oxygen species and malondialdehyde content, higher APX, monodehydroascorbate reductase, glutathione reductase activities, ascorbic acid/dehydroascorbic acid, and reduced glutathione/oxidized glutathione ratio, proline, and soluble sugar contents than those in the WT plants under nitrate treatment. Moreover, overexpressed transgenic seeds showed higher tolerance to methyl viologen induced oxidative stress compared with the WT. The NO accumulation and S-nitrosylation APX level were higher in transgenic plants than in WT plants after nitrate stress treatment. Our results provide novel insights into the mechanism of SlAPX modulation excess nitrate stress tolerance involving the S-nitrosylation modification.

Funder

National Natural Science Foundation of China

Yunnan Ten Thousand Talents Plan: Young & Elite Talents Project

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3