Gains in Genetic Enhancement of Early Maturing Maize Hybrids Developed during Three Breeding Periods under Striga-Infested and Striga-Free Environments

Author:

Badu-Apraku BaffourORCID,Adu Gloria B.,Yacoubou Abdoul-Madjidou,Toyinbo Johnson,Adewale Samuel

Abstract

Striga hermonthica is a major maize production constraint in West and Central Africa (WCA). Fifty-four early maturing maize hybrids of three breeding periods: 2008–2011, 2012–2013, 2014–2015, were evaluated under Striga-infested and non-infested environments in WCA. The study aimed at assessing genetic improvement in grain yield of the hybrids, identifying traits associated with yield gain during the breeding periods, and grain yield and stability of the hybrids in Striga infested and non-infested environments. Annual increase in grain yield of 101 kg ha−1 (4.82 %) and 61 kg ha−1 (1.24%) were recorded in Striga-infested and non-infested environments, respectively. The gains in grain yield from period 1 to period 3 under Striga-infested environments were associated with reduced anthesis-silking interval, reduced Striga damage, number of emerged Striga plants, improved ear aspect, and increased ears per plant. Ear aspect, ears per plant, and Striga damage at 8 and 10 weeks after planting (WAP) were significantly correlated with yield in Striga-infested environments, whereas ears per plant and plant and ear aspects had significant correlations with yield in non-infested environments. Hybrids TZdEI 352 × TZEI 355, TZdEI 378 × TZdEI 173, and TZdEI 173 × TZdEI 352 were outstanding in grain yield and stability in Striga-infested environments, whereas TZEI 326 × TZdEI 352, TZEI 495 × ENT 13, and TZdEI 268 × TZdEI 131 were superior in non-stress environments. These hybrids should be further tested extensively and commercialized. Significant genetic gains have been made in breeding for resistance to Striga hermonthica in early maturing maize hybrids.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3