High-Throughput Ground Cover Classification of Perennial Ryegrass (Lolium Perenne L.) for the Estimation of Persistence in Pasture Breeding

Author:

Jayasinghe ChinthakaORCID,Badenhorst Pieter,Jacobs Joe,Spangenberg GermanORCID,Smith KevinORCID

Abstract

Perennial ryegrass (Lolium perenne L.) is one of the most important forage grass species in temperate regions of Australia and New Zealand. However, it can have poor persistence due to a low tolerance to both abiotic and biotic stresses. A major challenge in measuring persistence in pasture breeding is that the assessment of pasture survival depends on ranking populations based on manual ground cover estimation. Ground cover measurements may include senescent and living tissues and can be measured as percentages or fractional units. The amount of senescent pasture present in a sward may indicate changes in plant growth, development, and resistance to abiotic and biotic stresses. The existing tools to estimate perennial ryegrass ground cover are not sensitive enough to discriminate senescent ryegrass from soil. This study aimed to develop a more precise sensor-based phenomic method to discriminate senescent pasture from soil. Ground-based RGB images, airborne multispectral images, ground-based hyperspectral data, and ground truth samples were taken from 54 perennial ryegrass plots three years after sowing. Software packages and machine learning scripts were used to develop a pipeline for high-throughput data extraction from sensor-based platforms. Estimates from the high-throughput pipeline were positively correlated with the ground truth data (p < 0.05). Based on the findings of this study, we conclude that the RGB-based high-throughput approach offers a precision tool to assess perennial ryegrass persistence in pasture breeding programs. Improvements in the spatial resolution of hyperspectral and multispectral techniques would then be used for persistence estimation in mixed swards and other monocultures.

Funder

Dairy Australia

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3