Research on Fruit Spatial Coordinate Positioning by Combining Improved YOLOv8s and Adaptive Multi-Resolution Model

Author:

Kong Dexiao1,Wang Jiayi1,Zhang Qinghui1,Li Junqiu2,Rong Jian1

Affiliation:

1. College of Big Data and Intelligent Engineering, Southwest Forestry University, Kunming 650224, China

2. Key Lab of State Forestry and GrassIand Administration on Forestry Ecological Big Data, Southwest Forestry University, Kunming 650224, China

Abstract

Automated fruit-picking equipment has the potential to significantly enhance the efficiency of picking. Accurate detection and localization of fruits are particularly crucial in this regard. However, current methods rely on expensive tools such as depth cameras and LiDAR. This study proposes a low-cost method based on monocular images to achieve target detection and depth estimation. To improve the detection accuracy of targets, especially small targets, an advanced YOLOv8s detection algorithm is introduced. This approach utilizes the BiFormer block, an attention mechanism for dynamic query-aware sparsity, as the backbone feature extractor. It also adds a small-target-detection layer in the Neck and employs EIoU Loss as the loss function. Furthermore, a fused depth estimation method is proposed, which incorporates high-resolution, low-resolution, and local high-frequency depth estimation to obtain depth information with both high-frequency details and low-frequency structure. Finally, the spatial 3D coordinates of the fruit are obtained by fusing the planar coordinates and depth information. The experimental results with citrus as the target result in an improved YOLOv8s network mAP of 88.45% and a recognition accuracy of 94.7%. The recognition of citrus in a natural environment was improved by 2.7% compared to the original model. In the detection range of 30 cm~60 cm, the depth-estimation results (MAE, RSME) are 0.53 and 0.53. In the illumination intensity range of 1000 lx to 5000 lx, the average depth estimation results (MAE, RSME) are 0.49 and 0.64. In the simulated fruit-picking scenario, the success rates of grasping at 30 cm and 45 cm were 80.6% and 85.1%, respectively. The method has the advantage of high-resolution depth estimation without constraints of camera parameters and fruit size that monocular geometric and binocular localization do not have, providing a feasible and low-cost localization method for fruit automation equipment.

Funder

Agricultural Joint Project of Yunnan Province

Key Laboratory of State Forestry and Grass and Administration on Forestry Ecological Big Data, Southwest Forestry University

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3