Nitrogen Mineralization, Soil Microbial Biomass and Extracellular Enzyme Activities Regulated by Long-Term N Fertilizer Inputs: A Comparison Study from Upland and Paddy Soils in a Red Soil Region of China

Author:

Ali SehrishORCID,Liu Kailou,Ahmed WaqasORCID,Jing Huang,Qaswar MuhammadORCID,Kofi Anthonio Christian,Maitlo Ali Akbar,Lu Zhang,Liu Lisheng,Zhang HuiminORCID

Abstract

A long-term experiment (38 years) was conducted to elucidate the effects of long-term N addition on the net N mineralization in both paddy and upland soils, based on their initial soil N status, with and in connection with soil microbial biomass and N cycling extracellular enzyme activities. Two treatments without N addition CK (No fertilizer) and K (inorganic potassium fertilizer) and two treatments with N addition (inorganic nitrogen fertilizer) and NK (inorganic nitrogen and potassium fertilizer) were placed in incubation for 90 days. Results showed that the total N and soil organic carbon (SOC) contents were higher in the treatments with N application compared to the treatments without N in both paddy and upland soils. The SOC content of paddy soil was increased relative to upland soil by 56.2%, 45.7%, 61.1% and 62.2% without N (CK, K) and with N (N and NK) treatments, respectively. Site-wise, total N concentration in paddy soil was higher by 0.06, 0.10, 0.57 and 0.60 times under the CK, K, N and NK treatments, respectively, compared with upland soil. In paddy soil, soil microbial biomass nitrogen (SMBN) was higher by 39.6%, 2.77%, 29.5% and 31.4%, and microbial biomass carbon (SMBC) was higher by 11.8%, 11.9%, 10.1% and 12.3%, respectively, in CK, K, N and NK treatment, compared with upland soil. Overall, compared to upland soil, the activities of leucine-aminopeptidase (LAP) were increased by 31%, 18%, 20% and 11%, and those of N-acetyl-b-D-glucosaminidase (NAG) were increased by 70%, 21%, 13% and 18% by CK, K, N and NK treatments, respectively, in paddy soil. A significantly linear increase was found in the NO3−-N and NH4+-N concentrations during the 90 days of the incubation period in both soils. NK treatment showed the highest N mineralization potential (No) along with mineralization rate constant, k (NMR) at the end of the incubation. SMBC, SMBN, enzyme activities, NO3−-N and NH4+-N concentrations and the No showed a highly significant (p ≤ 0.05) positive correlation. We concluded that long-term N addition accelerated the net mineralization by increasing soil microbial activities under both soils.

Funder

National Key Research and Development Program of China

Fund of Doctoral Research in Jiangxi Institute of Red Soil

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3