Effects of Long-Term Exclosure on Main Plant Functional Groups and Their Biochemical Properties in a Patchily Degraded Alpine Meadow in the Source Zone of the Yellow River, West China

Author:

Yang Pengnian1,Li Xilai12,Li Chenyi1,Zhang Jing1

Affiliation:

1. College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China

2. State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China

Abstract

This study aimed to understand the response of vegetation community characteristics in the degraded alpine meadow of the Source Zone of the Yellow River to exclosure of various lengths. Artificial fences were erected to prevent livestock grazing and let the degraded meadow recover naturally as a means of restoration. The research focused on a typical degraded alpine meadow in which four plots were fenced off for three periods of 1 year (E1), 4 years (E4), and 10 years (E10), plus a freely grazed plot as the control. The study compared and analyzed the differences in plant community characteristics, carbon (C), nitrogen (N), and phosphorus (P) reserves, as well as the stoichiometric characteristics of main functional groups in the alpine meadow over different exclosure durations. The results indicated that E10 long-term exclosure significantly increased the aboveground biomass of gramineous plants but reduced the aboveground biomass of miscellaneous grasses. However, when compared to E4 short-term exclosure, E10 resulted in a reduction in the aboveground biomass of Cyperaceae plants. On the other hand, E4 medium-term exclosure significantly increased the aboveground biomass of Gramineae and Cyperaceae. Exclosure significantly increased the nitrogen (N) and phosphorus (P) reserves of the aboveground plant communities. Among these communities, the plant communities in the E10 long-term exclosure had the highest N and P reserves. However, this exclosure length also led to a significant reduction in plant diversity. Furthermore, except for Cyperaceae, all functional groups were observed in E10 and E4 plots. The carbon–nitrogen ratio and carbon–phosphorus ratio of these groups were significantly lower than those of groups G and E1. Medium-term exclosure (E4) has a positive impact on the aboveground biomass as well as plants’ nitrogen and phosphorus reserves. However, long-term exclosure (E10) has been observed to decrease species diversity and nutrient utilization efficiency of alpine meadow vegetation, which can be detrimental to the sustainable development of the alpine meadow ecosystem. Therefore, it is not recommended to implement long-term exclosure. Instead, a moderate level of grazing should be adopted after 4 years of exclosure.

Funder

Qinghai Science and Technology Department

National Natural Science Foundation of China

111 Project of China

Qinghai Science and Technology Innovation and Entrepreneurship Team Project

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference52 articles.

1. Chinese ecosystem research network: Progress and perspectives;Fu;Ecol. Complex.,2010

2. Combatting global grassland degradation;Bardgett;Nat. Rev. Earth Environ.,2021

3. Effects of an ecological conservation and restoration project in the Three-River Source Region, China;Shao;J. Geogr.,2017

4. Effects of Climate Changes on the Pasture Productivity From 1961 to 2016 in Sichuan Yellow River Source, Qinghai-Tibet Plateau, China. Front;Zhang;Ecol. Evol.,2022

5. Characteristics of grassland degradation and driving forces in the source region of the Yellow River from 1985 to 2000;Liu;J. Geogr.,2006

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3