Abstract
Farm tractors in cultivation consume a big amount of fossil fuels and emit greenhouse gases to the atmosphere. Improving traction performance and power transfer indices of wheeled tractors and field terrain soil with higher traction (pull ability) at optimal travel reduction (TR) can optimize energy utilization. This study compares the traction performance, fuel consumption, and field productivity, of a farm tractor equipped with a new drive wheel “rigid lugged wheel (RLW)” and conventional tire wheel (CTW) in field tillage operations. Tractor with RLW resulted 24.6 kN drawbar pull and 6.6 km.h−1 travel speed at 80% tractive efficiency and 15.6% TR. While with CTW, the drawbar pull and the travel speed were 23.2 kN and 6.0 km h−1 respectively at 68% tractive efficiency and 36.3% TR. The RLW resulted in improved traction performance with similar equipment weight. Tractor with RLW also resulted 220.5% lower TR, 14.8% higher field productivity, and 15.4% lower fuel consumption. RLW can control equipment weight and field traffic intensity with the improved traction performance of wheeled tractors and will make the field operations more energy-efficient and economical. For enhanced field drivability of RLW, further work is required to test for diverse field conditions and differently sized tractors.
Funder
Ministry of Science and Technology of the People's Republic of China
Science and Technology Department of Hubei Province
Subject
Agronomy and Crop Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献