The Application of Biochar Enhances Soil Organic Carbon and Rice Yields

Author:

Yang Chuang12,Dou Sen1ORCID,Guo Dan1,Zhao Hangjin2

Affiliation:

1. College of Resource and Environmental Science, Jilin Agricultural University, Changchun 130118, China

2. College of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132101, China

Abstract

The freezing winter temperatures in Northeast China hinder the breakdown speed of straw, making it challenging to implement widespread straw return in rice fields, meaning that crop remnants are not efficiently utilised. This study involved a pot experiment conducted on rice plants that were treated with varying quantities of biochar: CK (no biochar); BC1 (5 t ha−1); BC2 (10 t ha−1); and BC3 (20 t ha−1). An investigation was conducted to examine the impact of biochar on the soil organic carbon (SOC), humus (HS) composition, humic acid (HA) structure, and rice yield of paddy fields. The findings demonstrated that the use of biochar led to a substantial rise in SOC and HA-C concentrations in the soil layer between 20 and 40 cm. Additionally, biochar’s application enhanced soil humification. Notably, the treatment with BC3 (20 t ha−1) had the most pronounced impact. The O/C ratio in the HA and the relative strength of the peaks at 1620 cm−1 on the infrared spectra showed a more pronounced response to the BC3 treatment compared to the other biochar treatments. However, the application of the BC1 treatment at a rate of 5 t ha−1 and the BC2 treatment at a rate of 10 t ha−1 had a minimal impact on the fluorescence intensity of humic acid (HA). The application of the BC3 treatment increased the aromatic nature of the humic acid (HA) in paddy soil, leading to the formation of an intricate and enduring HA structure. Furthermore, the use of the BC3 treatment resulted in a notable enhancement in the quantity of spikes, spike weight, and number of grains per spike. Additionally, it positively impacted the accumulation of dry matter in the spike, leading to a substantial 13.7% increase in the rice yield. Applying biochar at a rate of 20 t ha−1 is a sensible and effective approach to enhance the soil organic carbon (SOC) content, enhance the stability of the humic acid (HA)’s structure, and raise the rice yield in the rice-growing area of Northeast China. This study’s findings will establish a theoretical foundation for utilising soil biochar in the rice fields located in Northeast China.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Jilin Province College Student Science and Technology Innovation and Entrepreneurship Training Program Project

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3