An Improved YOLOv8 Model for Lotus Seedpod Instance Segmentation in the Lotus Pond Environment

Author:

Ma Jie1ORCID,Zhao Yanke2,Fan Wanpeng1,Liu Jizhan3

Affiliation:

1. School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China

2. State Key Laboratory of Intelligent Agricultural Power Equipment, Luoyang 471039, China

3. Key Laboratory of Modern Agricultural Equipment and Technology, Jiangsu University, Zhenjiang 212013, China

Abstract

Lotus seedpod maturity detection and segmentation in pond environments play a significant role in yield prediction and picking pose estimation for lotus seedpods. However, it is a great challenge to accurately detect and segment lotus seedpods due to insignificant phenotypic differences between the adjacent maturity, changing illumination, overlap, and occlusion of lotus seedpods. The existing research pays attention to lotus seedpod detection while ignoring maturity detection and segmentation problems. Therefore, a semantic segmentation dataset of lotus seedpods was created, where a copy-and-paste data augmentation tool was employed to eliminate the class-imbalanced problem and improve model generalization ability. Afterwards, an improved YOLOv8-seg model was proposed to detect and segment the maturity of lotus seedpods. In the model, the convolutional block attention module (CBAM) was embedded in the neck network to extract distinguished features of different maturity stages with negligible computation cost. Wise-Intersection over Union (WIoU) regression loss function was adopted to refine the regression inference bias and improve the bounding box prediction accuracy. The experimental results showed that the proposed YOLOv8-seg model provides an effective method for “ripe” and “overripe” lotus seedpod detection and instance segmentation, where the mean average precision of segmentation mask (mAPmask) reaches 97.4% and 98.6%, respectively. In addition, the improved YOLOv8-seg exhibits high robustness and adaptability to complex illumination in a challenging environment. Comparative experiments were conducted using the proposed YOLOv8-seg and other state-of-the-art instance segmentation methods. The results showed that the improved model is superior to the Mask R-CNN and YOLACT models, with recall, precision, mAPbox and mAPmask being 96.5%, 94.3%, 97.8%, and 98%, respectively. The average running time and weight size of the proposed model are 25.9 ms and 7.4 M, respectively. The proposed model obtained the highest mAP for lotus seedpod maturity detection and segmentation while maintaining an appropriate model size and speed. Furthermore, based on the obtained segmentation model, 3D visualization of the lotus pond scene is performed, and cloud point of lotus seedpods is generated, which provides a theoretical foundation for robot harvesting in the lotus pond.

Funder

“China Postdoctoral Science Foundation”, China

“Open Fund of State Key Laboratory of Intelligent Agricultural Power Equipment”, China

“Jiangsu University Senior Talents Start-up Fund”, China

“Jiangsu Province Innovation and Entrepreneurship Doctoral Program”, China

Publisher

MDPI AG

Reference29 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3