Life Cycle Assessment of Hydrothermal Carbonization: A Review of Product Valorization Pathways

Author:

Ogunleye Andrea1,Flora Joseph1,Berge Nicole1

Affiliation:

1. Department of Civil and Environment Engineering, University of South Carolina, Columbia, SC 29208, USA

Abstract

Hydrothermal carbonization (HTC) has the potential to be a sustainable and environmentally beneficial approach for organic waste treatment. It is likely that HTC product use will dictate the viability of large-scale HTC facilities; therefore, understanding the viability and environmental implications associated with HTC product valorization pathways is critical. The overall goal of this review is to gain an understanding of how HTC product valorization is currently being modeled in life cycle assessment studies, and to use such information to assess current research and/or data needs associated with product valorization. To accomplish this, a review of existing HTC literature was conducted and used to assess the current state of knowledge surrounding the environmental implications of HTC product use. From this review of the literature, it is clear that potential exists for HTC product valorization. To realize this potential in a full-scale application, research gaps and data needs were identified that included a system-level integration to evaluate location-specific information as well as more extensive characterization of the impact of HTC product properties on valorization impacts.

Funder

National Science Foundation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3