A Proposal for Lodging Judgment of Rice Based on Binocular Camera

Author:

Yang Yukun12,Liang Chuqi2,Hu Lian2ORCID,Luo Xiwen12,He Jie2ORCID,Wang Pei2,Huang Peikui2,Gao Ruitao2,Li Jiehao2ORCID

Affiliation:

1. College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China

2. Key Laboratory of Key Technology on Agricultural Machine and Equipment, Ministry of Education, College of Engineering, South China Agricultural University, Guangzhou 510642, China

Abstract

Rice lodging is a crucial problem in rice production. Lodging during growing and harvesting periods can decrease rice yields. Practical lodging judgment for rice can provide effective reference information for yield prediction and harvesting. This article proposes a binocular camera-based lodging judgment method for rice in real-time. As a first step, the binocular camera and Inertial Measurement Unit (IMU) were calibrated. Secondly, Census and Grayscale Level cost features are constructed for stereo matching of left and right images. The Cross-Matching Cost Aggregation method is improved to compute the aggregation space in the LAB color space. Then, the Winner-Takes-All algorithm is applied to determine the optimal disparity for each pixel. A disparity map is constructed, and Multi-Step Disparity Refinement is applied to the disparity map to generate the final one. Finally, coordinate transformation obtains 3D world coordinates corresponding to pixels. IMU calculates the real-time pose of the binocular camera. A pose transformation is applied to the 3D world coordinates of the rice to obtain its 3D world coordinates in the horizontal state of the camera (pitch and roll angles are equal to 0). Based on the distance between the rice and the camera level, thresholding was used to determine whether the region to be detected belonged to lodging rice. The disparity map effect of the proposed matching algorithm was tested on the Middlebury Benchmark v3 dataset. The results show that the proposed algorithm is superior to the widely used Semi-Global Block Matching (SGBM) stereo-matching algorithm. Field images of rice were analyzed for lodging judgments. After the threshold judgment, the lodging region results were accurate and could be used to judge rice lodging. By combining the algorithms with binocular cameras, the research results can provide practical technical support for yield estimation and intelligent control of rice harvesters.

Funder

Laboratory of Science and Technology Innovation 2030—“New Generation Artificial Intelligence” Major Project

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3