Delineation of Soil Management Zone Maps at the Regional Scale Using Machine Learning

Author:

Maleki Sedigheh1,Karimi Alireza1ORCID,Mousavi Amin1,Kerry Ruth2,Taghizadeh-Mehrjardi Ruhollah3ORCID

Affiliation:

1. Department of Soil Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 9177948978, Iran

2. Department of Geography, Brigham Young University, Provo, UT 84602, USA

3. Department of Geosciences, University of Tübingen, 72076 Tübingen, Germany

Abstract

Applying fertilizers to soil in a site-specific way that maximizes yields and minimizes environmental damage is an important goal. Developing soil management zones (MZs) is a suitable method for achieving sustainable agricultural production. Thus, this work aims to investigate MZs delineated based on the different soil properties using machine learning methods. To achieve these, 202 soil samples were collected at the agricultural land of pomegranate, pistachio, and saffron. A “random forest” model was applied to map soil properties based on environmental covariates. The predicted “Lin’s concordance correlation coefficient” values in validation soil properties varied from 0.65 to 0.79. The maps indicated low amounts of soil organic carbon, available potassium, available phosphate, and total nitrogen in most of the region. Furthermore, the study identified four different MZs according to relationships between soil properties and environmental covariates. Generally, the ranking of zones in terms of soil fertility was MZ4 > MZ1 > MZ3 > MZ2 based on the investigated soil properties and the soil quality (SQ) map. The five grades of SQ (i.e., very high, high, moderate, low, and very low) indicated that there was heterogeneous SQ in each MZ in the study area. There were 1.65 ha identified in MZ4 with very low SQ. This result is important in determining the amount of fertilizer to add to the soil in the different areas. It confirms the need for more specific regional management of agriculture lands in this region.

Funder

Ferdowsi University of Mashhad, Iran

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference92 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3