Silicon Compensates Phosphorus Deficit-Induced Growth Inhibition by Improving Photosynthetic Capacity, Antioxidant Potential, and Nutrient Homeostasis in Tomato

Author:

Zhang Yi,Liang Ying,Zhao Xin,Jin Xiu,Hou Leiping,Shi Yu,Ahammed Golam

Abstract

Phosphorus (P) deficiency in soils is a major problem for sustainable crop production worldwide. Silicon (Si) is a beneficial element that can promote plant growth, development and responses to stresses. However, the effect of Si on tomato (Solanum lycopersicum L.) growth, photosynthesis and mineral uptake under P deficit conditions and underlying mechanisms remain unclear. Here, we showed that low P (LP) supply inhibited tomato growth as revealed by significantly decreased fresh and dry weights of shoots and impaired root morphological traits. LP-induced growth inhibition was associated with decreased photosynthetic pigment content, net photosynthetic rate (Pn), stomatal conductance, transpiration rate and water use efficiency. However, exogenous Si application alleviated LP-induced decreases in growth and physiological parameters. In particular, Si increased Pn by 65.2%, leading to a significantly increased biomass accumulation. Biochemical quantification and in situ visualization of reactive oxygen species (ROS) showed increased ROS (O2−· and H2O2) accumulation under LP stress, which eventually elevated lipid peroxidation. Interestingly, exogenous Si decreased ROS and malondialdehyde levels by substantially increasing the activity of antioxidant enzymes, including superoxide dismutase, peroxidase, and catalase. In addition, Si increased concentrations of osmoregulatory substances, such as proline, soluble sugar, soluble proteins, free amino acids, and organic acids under LP stress. Analysis of major element concentrations revealed that exogenous Si application under LP stress not only increased Si uptake but also enhanced the concentrations of most essential elements (K, Na, Ca, Mg, Fe, and Mn) in different tissues (roots, leaves, and stems). These results reveal that Si mitigates LP stress by improving photosynthetic capacity, antioxidant potential, and nutrient homeostasis and that it can be used for agronomic management of vegetable crops in P-deficient soils.

Funder

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3