Remote Sensing of Evapotranspiration over the Central Arizona Irrigation and Drainage District, USA

Author:

French Andrew,Hunsaker Douglas,Bounoua Lahouari,Karnieli Arnon,Luckett William,Strand Robert

Abstract

Knowledge of baseline water use for irrigated crops in the U.S. Southwest is important for understanding how much water is consumed under normal farm management and to help manage scarce resources. Remote sensing of evapotranspiration (ET) is an effective way to gain that knowledge: multispectral data can provide synoptic and time-repetitive estimates of crop-specific water use, and could be especially useful for this arid region because of dominantly clear skies and minimal precipitation. Although multiple remote sensing ET approaches have been developed and tested, there is not consensus on which of them should be preferred because there are still few intercomparison studies within this environment. To help build the experience needed to gain consensus, a remote sensing study using three ET models was conducted over the Central Arizona Irrigation and Drainage District (CAIDD). Aggregated ET was assessed for 137 wheat plots (winter/spring crop), 183 cotton plots (summer crop), and 225 alfalfa plots (year-round). The employed models were the Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC), the Two Source Energy Balance (TSEB), and Vegetation Index ET for the US Southwest (VISW). Remote sensing data were principally Landsat 5, supplemented by Landsat 7, MODIS Terra, MODIS Aqua, and ASTER. Using district-wide model averages, seasonal use (excluding surface evaporation) was 742 mm for wheat, 983 mm for cotton, and 1427 mm for alfalfa. All three models produced similar daily ET for wheat, with 6–8 mm/day mid-season. Model estimates diverged for cotton and alfalfa sites. Considering ET over cotton, TSEB estimates were 9.5 mm/day, METRIC 6 mm/day, and VISW 8 mm/day. For alfalfa, the ET values from TSEB were 8.0 mm/day, METRIC 5 mm/day, and VISW 6 mm/day. Lack of local validation information unfortunately made it impossible to rank model performance. However, by averaging results from all of them, ET model outliers could be identified. They ranged from −10% to +18%, values that represent expected ET modeling discrepancies. Relative to the model average, standardized ET-estimators—potential ET (ET ∘ ), FAO-56 ET, and USDA-SW gravimetric-ET— showed still greater deviations, up to 35% of annual crop water use for summer and year-round crops, suggesting that remote sensing of actual ET could lead to significantly improved estimates of crop water use. Results from this study highlight the need for conducting multi-model experiments during summer-months over sites with independent ground validation.

Funder

United States - Israel Binational Agricultural Research and Development Fund

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3