Anaerobic Digestion and Hot Water Pretreatment of Tropically Grown C4 Energy Grasses: Mass, Carbon, and Energy Conversions from Field Biomass to Fuels

Author:

Wells Jon M.ORCID,Crow Susan E.,Khanal Samir Kumar,Turn Scott,Hashimoto Andrew,Kiniry Jim,Meki Norman

Abstract

The efficacy of C4 grasses as feedstocks for liquid fuel production and their climate mitigation potential remain unresolved in the tropics. To identify highly convertible C4 grasses, we measured final fuels and postprocess biomass produced in two laboratory-scale conversion pathways across 12 species and varieties within the Poaceae (grass) family. Total mass, carbon, and energy in final fuels and postprocess biomass were assessed based on field mass and area-based production. Two lignocellulosic processes were investigated: (1) anaerobic digestion (AD) to methane and (2) hot water pretreatment and enzymatic hydrolysis (HWP-EH) to ethanol. We found AD converted lignocellulose to methane more efficiently in terms of carbon and energy compared to ethanol production using HWP-EH, although improvements to and the optimization of each process could change these contrasts. The resulting data provide design limitations for agricultural production and biorefinery systems that regulate these systems as net carbon sources or sinks to the atmosphere. Median carbon recovery in final fuels and postprocess biomass from the studied C4 grasses were ~5 Mg C ha−1 year−1 for both methane and ethanol, while median energy recovery was ~200 MJ ha−1 year−1 for ethanol and ~275 MJ ha−1 year−1 for methane. The highest carbon and energy recovery from lignocellulose was achieved during methane production from a sugarcane hybrid called energycane, with ~10 Mg C ha−1 year−1 and ~450 MJ ha−1 year−1 of carbon and energy recovered, respectively, from fuels and post-process biomass combined. Carbon and energy recovery during ethanol production was also highest for energycane, with ~9 Mg C ha−1 year−1 and ~350 MJ ha−1 year−1 of carbon and energy recovered in fuels and postprocess biomass combined. Although several process streams remain unresolved, agricultural production and conversion of C4 grasses must operate within these carbon and energy limitations for biofuel and bioenergy production to be an atmospheric carbon sink.

Funder

Office of Naval Research

Agricultural Research Service

National Institute of Food and Agriculture

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3