Lessons from Assessing Uncertainty in Agricultural Water Supply Estimation for Sustainable Rice Production

Author:

Song Jung-Hun,Her YoungguORCID,Jun Sang Min,Hwang Soonho,Park Jihoon,Kang Moon-Seong

Abstract

Agricultural water supply (AWS) estimation is one of the first and fundamental steps of developing agricultural management plans, and its accuracy must have substantial impacts on the following decision-making processes. In modeling the AWS for paddy fields, it is still common to determine parameter values, such as infiltration rates and irrigation efficiency, solely based on literature and rough assumptions due to data limitations; however, the impact of parameter uncertainty on the estimation has not been fully discussed. In this context, a relative sensitivity index and the generalized likelihood uncertainty estimation (GLUE) method were applied to quantify the parameter sensitivity and uncertainty in an AWS simulation. A general continuity equation was employed to mathematically represent the paddy water balance, and its six parameters were investigated. The results show that the AWS estimates are sensitive to the irrigation efficiency, drainage outlet height, minimum ponding depth, and infiltration, with the irrigation efficiency appearing to be the most important parameter; thus, they should be carefully selected. Multiple combinations of parameter values were observed to provide similarly good predictions, and such equifinality produced the substantial amount of uncertainty in AWS estimates regardless of the modeling approaches, indicating that the uncertainty should be counted when developing water management plans. We also found that agricultural system simulations using only literature-based parameter values provided poor accuracy, which can lead to flawed decisions in the water resources planning processes, and then the inefficient use of public investment and resources. The results indicate that modelers’ careful parameter selection is required to improve the accuracy of modeling results and estimates from using not only information from the past studies but also modeling practices enhanced with local knowledge and experience.

Funder

National Research Foundation of Korea

Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3