Mechanisms and Strategies of Plant Microbiome Interactions to Mitigate Abiotic Stresses

Author:

Munir Neelma,Hanif MariaORCID,Abideen ZainulORCID,Sohail MuhammedORCID,El-Keblawy AliORCID,Radicetti EmanueleORCID,Mancinelli RobertoORCID,Haider Ghulam

Abstract

Abiotic stresses are the most significant factors reducing agricultural productivity. Plants face extreme environmental conditions that may affect their biological mechanisms, thereby influencing their growth and development. Microorganisms possess substantial metabolites that aid in helping plants mitigate abiotic stresses. Plants’ interaction with microbes constitutes a diversified ecosystem, as sometimes both the partners share a mutualistic relationship. Endophytes, plant-growth-promoting rhizobacteria (PGPRs), and arbuscular mycorrhizal fungi (AMFs) are examples of microorganisms that play an essential role in alleviating abiotic stresses and, hence, improving plant growth. The plant–microbe interaction leads to the modulation of complex mechanisms in the plant cellular system. Moreover, the residing microbial flora also inhibits the phytopathogens, therefore, it becomes part of plants’ innate defense system. Keeping in view the growing environmental concerns, it is important to identify the role of the plant microbiome in the transportation of nutrients to maintain sustainable production. Furthermore, it is important to identify the factors enabling plants to recruit beneficial microbial species and how to deal with the potential pathogens. Therefore, this review aims to summarize the impacts of various abiotic stressors on agricultural productivity and the role of beneficial microorganisms in mitigating the negative effects of abiotic stresses. The literature review also shows that the beneficial microbes, including PGPRs, AMFs, and endophytes, adopt various mechanisms for ameliorating the negative effects of various stresses. It has been observed that biochar and microbes, either individually or in combination, can play a significant role in maintaining plant growth under stress conditions. Although conventional inoculation of beneficial microbes mitigates abiotic stresses and enhances productivity, the advancement in genetic engineering would help transfer specific genes from the microbes to plants to aid in abiotic stress mitigation.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3