Design, Control, and Performance Aspects of Semi-Closed Greenhouses

Author:

Sapounas AthanasiosORCID,Katsoulas NikolaosORCID,Slager Bart,Bezemer Robert,Lelieveld Charlotte

Abstract

Several greenhouse energy saving technologies and management strategies have been developed in order to meet the needs for implementation of production systems with low and efficient energy use and low CO2 emissions. Towards this aim, a number of greenhouse concepts that make use of these technologies have been developed and tested, such as the closed greenhouse, the solar greenhouse, the energy-producing greenhouse, and others. The closed or semi-closed greenhouse concept is widely accepted as a concept to achieve the targets for energy saving and low CO2 emissions. A major difference of this concept to a conventional greenhouse is that climate control by window ventilation is partially or completely replaced by systems that treat the air, regulate the air exchange between inside and outside, and in few cases collect and store the excess heat load in order to be reused at a later time. A semi-closed greenhouse allows temperature, humidity, and CO2 concentration to be controlled independently, during heating as well as cooling mode function. Among others, semi-closed greenhouses offer possibilities for better control of greenhouse environment, for increasing water use efficiency by decreasing the evaporation losses via ventilation and for reducing the pesticide use by decreasing the entry of insects and fungal spores in the greenhouse through the ventilation openings. The aim of this review is to focus on the design, control, and performance aspects of semi-closed greenhouse systems which use either (a) an air treatment corridor with evaporative cooling pad connected with an air distribution system with perforated polyethylene tubes or (b) decentralized air treatment units distributed inside the greenhouse. It gives on overview of the principles of the semi-closed greenhouse, the potential energy consumption and the expected savings. Additionally, it gives insight into the climate conditions in relation to the conventional greenhouse, crop growth, water consumption, and pest control.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference46 articles.

1. Kyoto Protocol to the United Nations Framework,1998

2. Ministerie van Landbouw Natuur en Voedselkwaliteit Meerjarenafspraak Energietransitie Glastuinbouw 2014–2020https://www.rijksoverheid.nl/documenten/convenanten/2018/11/09/wijziging-meerjarenafspraak-energietransitie-glastuinbouw-2014-2020

3. Energiemonitor van de Nederlandse Glastuinbouw 2017;Van Der Velden,2018

4. GREENHOUSE GROWING: OUTLOOK 2000

5. THE SOLAR GREENHOUSE: STATE OF THE ART IN ENERGY SAVING AND SUSTAINABLE ENERGY SUPPLY

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3