The 13C Discrimination of Crops Identifies Soil Spatial Variability Related to Water Shortage Vulnerability

Author:

Haberle Jan,Duffková RenataORCID,Raimanová Ivana,Fučík PetrORCID,Svoboda Pavel,Lukas VojtěchORCID,Kurešová Gabriela

Abstract

Spatial variability of crop growth and yields is the result of many interacting factors. The contribution of the factors to variable yields is often difficult to separate. This work studied the relationships between the 13C discrimination (Δ13C) of plants and the spatial variability of field soil conditions related to impacts of water shortage on crop yield. The 13C discrimination, the indicator of water shortage in plants, 15N (δ15N) discrimination, and nitrogen (N) content were determined in grains of winter wheat, spring barley, and pea. The traits were observed at several dozens of grid spots in seven fields situated in two regions with different soil and climate conditions between the years 2017 and 2019. The principles of precision agriculture were implemented in some of the studied fields and years by variable rate nitrogen fertilization. The Δ13C significantly correlated with grain yields (correlation coefficient from 0.66 to 0.94), with the exception of data from the wetter year 2019 at the site with higher soil water capacity. The effect of drought was demonstrated by statistically significant relationships between Δ13C in dry years and soil water capacity (r from 0.46 to 0.97). The significant correlations between Δ13C and N content of seeds and soil water capacity agreed with the expected impact of water shortage on plants. The 13C discrimination of crop seeds was confirmed as a reliable indicator of soil spatial variability related to water shortage. Stronger relationships were found in variably fertilized areas.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3