Affiliation:
1. College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
2. Department of Geography and the Environment, University of North Texas, Denton, TX 76203, USA
3. CMA-CAU Jointly Laboratory of Agriculture Addressing Climate Change, Beijing 100193, China
Abstract
The arid and semi-arid region of Northwest China plays a significant role in potato production, yet yields are often hampered by drought due to limited precipitation and irrigation water. The ridge–furrow rainwater-harvesting technology is an efficient and widely used technique to relieve drought impact and improve crop yield by changing the micro-topography to harvest rainwater to meet the water demand of crops. An analysis of precipitation, water demand, and runoff data spanning 30 years guided the selection of suitable rainwater-harvesting methods tailored to meteorological conditions. The results showed that potato water demand exceeded precipitation in the region. The mulching approach performed best in the western arid region with the most significant increase in yield and water use efficiency (WUE) and was suitable for the western semi-arid region and the agro-pastoral ecotone. In the potato dryland farming areas, the water deficit increased from southeast to northwest. Specifically, northern Gansu, northern Ningxia, and midwestern Inner Mongolia experienced a water deficit of over 200 mm, and rainwater harvesting combined with irrigation was recommended. Conversely, regarding deficits below 200 mm in southern Gansu, Ningxia, and central Inner Mongolia, a 1:1 or 2:1 pattern of ridges could be applied, and mulching was needed only in the necessary areas. For the southern Qinghai, Shaanxi, and eastern Inner Mongolia regions, ridge–furrow rainwater harvesting could be replaced by flat potato cropping. In summary, rainwater harvesting addresses water deficits, aiding climate adaptation in Northwest China’s arid and semi-arid regions. The implementation of mulching and ridge–furrow technology must be location-specific.
Funder
National Key Research and Development Program