Soil C:N:P Stoichiometry Succession and Land Use Effect after Intensive Reclamation: A Case Study on the Yangtze River Floodplain

Author:

Su Baowei1,Zhang Huan2,Zhang Yalu1,Shao Shuangshuang3,Mouazen Abdul M.4ORCID,Jiao He1,Yi Shuangwen1,Gao Chao1

Affiliation:

1. School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China

2. School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China

3. School of resource and environment, Henan University of Engineering, Zhengzhou 451191, China

4. Precision Soil and Crop Engineering Group (Precision SCoRing), Department of Environment, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Blok B, 1st Floor, 9000 Gent, Belgium

Abstract

The coupling cycles of soil carbon (C), nitrogen (N), and phosphorus (P) have a significant impact on biogeochemical processes and ecosystem services. For centuries, large areas of floodplain wetlands in China have been extensively reclaimed for agricultural purposes due to population growth. However, little is known about the evolution of soil C:N:P stoichiometry along a reclamation chronosequence, particularly across different land uses. In this study, we investigated the variations in soil C:N:P ratios with land use and time gradients along a reclamation chronosequence comprising c. 0, 60, 100, 280, 2000, and 3000 years. Land reclamation induced nutrient decoupling, as it facilitated C and N accumulation from biological processes but restricted P supply controlled by geochemical processes. Soil C and N sequestration reached a stable state after 2000 years, while P declined steadily from 60 years. Soil C/P and N/P increased significantly and were controlled by organic carbon (OC) and total nitrogen (TN), respectively, indicating that an increase in C and N could also promote P uptake. Soil C/N declined in the first 60 years and stabilized at a threshold of 10:1. Different land use patterns following reclamation resulted in distinct soil nutrient structures. Paddies retained more OC and TN but exhibited lower adsorption of total phosphorus (TP) compared to adjacent dryland, leading to significant differences in C/P and N/P between land uses. Based on the redundancy analysis and random forest model, soil OC and TN were mainly affected by the abundance of bacteria metabolizing cellulose, while metal oxides, including Fe2O3 and CaO, could best predict TP. Soil C/P and N/P were mainly driven by soil texture and rose significantly with the increasing proportion of clay particles. Our study suggests that as reclamation proceeds, more anthropogenic management is required to regulate potential nutrient imbalances in order to prevent adverse effects on crop growth, soil quality, and ecosystem health. Additionally, any fertilization strategy should be developed based on dryland C and N deficiencies, and lack of P in paddies.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3