Assessing Climate Change Impact on Cropland Suitability in Kyrgyzstan: Where Are Potential High-Quality Cropland and the Way to the Future

Author:

Park SugyeongORCID,Lim Chul-HeeORCID,Kim Sea JinORCID,Isaev Erkin,Choi Sol-E,Lee Sung-Dae,Lee Woo-KyunORCID

Abstract

Climate change is one of the greatest challenges in Kyrgyzstan. There have been negative spillover effects in agriculture. This study aims to assess the climate change impacts on cropland suitability in Kyrgyzstan. We used the random forest algorithm to develop a model that captures the effects of multiple climate and environment factors at a spatial resolution of 1 km2. The model was then applied in the scenario analysis for an understanding of how climate change affects cropland distribution. The potential high-quality cropland was found to be included in existing croplands, while the remaining were distributed around the Chu-Talas valley, the Issyk-kul area, and the Fergana valley. These potential high-quality croplands comprise grasslands (47.1%) and croplands (43.7%). In the future, the potential high-quality cropland exhibited inland trends at the periphery of original cropland category, with grassland and cropland as the primary land components. Due to climate change, potential high-quality cropland is expected to gradually reduce from the 2050s to the 2070s, exhibiting the largest reduction in potential high-quality areas for the Representative Concentration Pathway 8.5 scenario. Therefore, the short- and long-term adaptation strategies are needed for prioritizing the croplands to ensure food security and agricultural resilience.

Funder

Korea Agency for Infrastructure Technology Advancement

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference70 articles.

1. Climate Change Adaptation in Europe and Central Asia,2018

2. Climate Change 2014: Mitigation of Climate Change;Edenhofer,2015

3. Analyzing adaptation strategies for maize production under future climate change in Guanzhong Plain, China

4. Third National Communication of the Kyrgyz Republic Under the UN Framework Convention on Climate Change 2016, Retrieved from Bishikek,2016

5. Adapting to climate change: gaps and strategies for Central Asia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3