Analysis of the Potato Vegetation Stages Based on the Dynamics of Water Consumption in the Closed Urban Vertical Farm with Automated Microclimate Control

Author:

Rumiantsev Boris1,Dzhatdoeva Sofya1ORCID,Zotov Vasily1,Kochkarov Azret12ORCID

Affiliation:

1. Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, 119071 Moscow, Russia

2. Department of Data Analysis and Machine Learning, Faculty of Information Technology and Big Data Analysis, Financial University under the Government of the Russian Federation, Leningradsky Prospekt, 49/2, 125167 Moscow, Russia

Abstract

One of the promising trends in modern agronomy is the development of automated closed urban vertical farms with controlled environmental conditions, which can improve dynamics of the crop vegetation process. In the frame of this work, the analysis of the vegetative stages of potato seed material (minitubers and microplants) grown in the conditions of the automated vertical farm was conducted. The study was performed at the vertical farm of the Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences by the analysis of water consumption dynamics. It was established that the 20-day reduction in the vegetative period of the vertical-farm-grown potatoes in comparison with the field-grown ones occurred due to the reduction in the final stage of vegetation (mass gain of newly formed tubers) under the minitubers planting. The same reduction occurred due to both final and initial vegetative stage (absence of tubers germination) under the planting of microplants. The obtained result shed new light on the vegetation dynamics of potato grown under controlled conditions of the urban vertical farms and demonstrated a possibility to perform the study of plant development process using automated diagnostics systems of vertical farms.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3