Abstract
Detecting socio-ecological boundaries in traditional rural landscapes is very important for the planning and sustainability of these landscapes. Most of the traditional methods to detect ecological boundaries have two major shortcomings: they are unable to include uncertainty, and they often exclude socio-economic information. This paper presents a new approach, based on unsupervised Bayesian network classifiers, to find spatial clusters and their boundaries in socio-ecological systems. As a case study, a Mediterranean cultural landscape was used. As a result, six socio-ecological sectors, following both longitudinal and altitudinal gradients, were identified. In addition, different socio-ecological boundaries were detected using a probability threshold. Thanks to its probabilistic nature, the proposed method allows experts and stakeholders to distinguish between different levels of uncertainty in landscape management. The inherent complexity and heterogeneity of the natural landscape is easily handled by Bayesian networks. Moreover, variables from different sources and characteristics can be simultaneously included. These features confer an advantage over other traditional techniques.
Funder
Agencia Estatal de Investigación
Subject
Agronomy and Crop Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献