Enhancement of Soil Organic Carbon, Water Use Efficiency and Maize Yield (Zea mays L.) in Sandy Soil through Organic Amendment (Grass Peat) Incorporation

Author:

Yang Kaiqi1,Hu Jian1,Ren Yunzhuo1,Zhang Zhiao1,Tang Mei1,Shang Zhenkun1,Zhen Qing12,Zheng Jiyong12ORCID

Affiliation:

1. College of Natural Resources and Environment/State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Xianyang 712100, China

2. Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resource, Xianyang 712100, China

Abstract

The efficient use of organic amendment (OM) is considered an economic, environmental and sustainable practice to improve soil quality, especially the accumulation of organic carbon (C) and water use efficiency (WUE) in dryland agriculture. However, the effect of different OM on soil nutrients, organic carbon fractions, water content and maize yield is unclear in arid and semi-arid regions with sandy soil. Field experiments with four OM, grass peat (GP), biochar (BC), organic fertilizer (OF) and maize straw (MS), were conducted with an equivalent amount of C input on the southeastern edge of Mu Us Sandy Land in China. Results indicated that the soil nutrients and labile organic carbon (DOC, MBC, KMnO4-C and POC) concentrations were higher under OM (GP, BC, OF and MS) treatments than in CK in the 0–0.10 m soil layers. GP treatment remarkably improved carbon pool index values (1.63, 2.51 and 2.24, respectively) in all layers compared to CK (1.00). At maturity stages of maize, the soil water content (SWC) under GP and OF treatments (11.3–13.4%) was remarkably higher than that in CK treatment (around 10.0%). Yield and WUE were remarkably greater in GP and OF treatments compared to CK. The results proved that GP amendment is superior for barren sandy soil than BC, OF and MS treatments in improving soil nutrients, organic carbon sequestration, WUE and crop yield in China.

Funder

National Natural Science Foundation of China

Light of West China Program of the Chinese Academy of Sciences

Key Research and Development Plan of Ningxia Hui Autonomous Region

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3